
SOPHOMORE COLLEGE
MATHEMATICS OF THE INFORMATION AGE

SECRETS OF THE UNIVERSE, PART 1
FOURIER SERIES

In our rapid treatment of communications we arrived at what I (earnestly) referred to as
a Major Secret of the Universe:

Every signal has a spectrum. The spectrum determines the signal.

Learning this secret is learning about Fourier analysis. The subject is both vast and deep,
and its origins are far removed from where we’re headed: our goal at present is to use Fourier
analysis to accomplish the very first task of the course syllabus.

An analog signal is typically an electronic version of a signal that we encounter with our
senses, a sound or an image, for example. We want to ‘digitize’ that signal, to turn it into
a list of 0’s ands 1’s, in a way that captures the information in the signal sufficiently well so
that, after much in between, when we ultimately turn it back to analog our perceptions of
the signal are acceptable. Fourier analysis is the key to this.

I want to start the description of ingredients of signals at a very unlikely place, triangles.
When you studied triangles and the measurement of triangles you encountered for the first
time the sine, cosine and tangent.
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These basic quantities are defined through ratios of lengths. There is another way to express
the tangent, making its name particularly fitting.

We see here, as we did not see in the original picture of a triangle, a connection between
the trigonometric ratios and a circle. It is worth making this connection more explicit. The
trigonometric quantities cos θ and sin θ were defined only for angles in a right triangle, that
is, only for angles between 0 and a right angle π/2 (we’ll use radian measure for angles).

2



But that picture of a triangle is part of a picture within part of a circle, and that part of a
circle is within an entire circle. We see the possibility of extending the definition of sine and
cosine for angles beyond π/2.

This is a new definition of sine and cosine. It’s not that the original definition in terms of
a right triangle is wrong, is that it’s possible to give a new definition that includes the old
and goes beyond it.

What has been gained? First, there is the gain in defining cos θ and sin θ for all angles
between 0 and 2π. But more than that, much more, is the realization that sine and cosine,
of their nature, repeat their values.

• Picture of circle with θ and θ + 2π identified, hence the relationship

cos(θ + 2π) = cos θ

sin(θ + 2π) = sin θ

One says that the sine and cosine are periodic of period 2π. It follows from this that

cos(θ + 2πk) = cos θ

sin(θ + 2πk) = sin θ

for k = 0, 1, 2, . . . . (Proof of this?)
From the interpretation of cos θ and sin θ as giving a point on the unit circle, we move

toward a dynamic picture and think of a moving point.

• Rotate counterclockwise around the circle to get graphs of sin θ and cos θ for θ ≥ 0.
• What about θ ≤ 0?

We extend the definition of sine and cosine still further to include negative angles. We then
have sin θ and cos θ defined for all real values of θ and we can say

cos(θ + 2πk) = cos θ

sin(θ + 2πk) = sin θ

for k = 0,±1,±2, . . . .
The periodicity of sine and cosine is absolutely fundamental – and absolutely not news

to you. It shouldn’t be necessary to try to sell periodicity as an important physical (and
mathematical) phenomenon – you’ve seen examples and applications of periodic behavior in
probably (almost) every science class you’ve taken. I would only remind you that periodicity
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often shows up in two varieties, sometimes related, sometimes not. Generally speaking we
think about periodic phenomena according to whether they are periodic in time or periodic
in space.

In the case of time the phenomenon comes to you, so to speak. For example, you stand
at a fixed point in spaces and a note reaches your ear as a (longitudinal) pressure wave,
a periodic compression and rarefaction of the air. In the case of space, you come to the
phenomenon. You take a picture and you observe repeating patterns. One important way
this occurs is when there is a repeating pattern or some kind of symmetry in a spatial
region, and physically observable quantities associated with that region have a repeating
pattern that reflects this. For example, a crystal has a regular, repeating pattern of atoms.
The electron density distribution is then a periodic function of the spatial variable (in R3)
that describes the crystal. Temporal and spatial periodicity come together most naturally in
wave motion, where periodicity in time is frequency and periodicity in space is wavelength
(if we take a snapshot of the wave to fix the time). So now we have mathematical functions
that exhibit the ubiquitous, important natural phenomenon of periodicity.

Finally, though in the examples above I said “a point going around a circle . . . ”, I didn’t
say how fast the point is supposed to be going around, so to complete the move toward
a more dynamic view of sine and cosine let’s take this up. It’s convenient, when thinking
dynamically, to use the phrase ‘one cycle’ for one complete trip around the circle, starting
wherever (as specified by the phase) and ending at the point where we started. It’s then
also convenient to take as a standard the motion where the point completes one cycle in one
second. How do we modify the sine and cosine to achieve this? Let t represent time. Then
as t goes from 0 to 1 we want the angle θ to go from 0 to 2π The easiest thing is to make θ
related to t by

θ = 2πt ,

and so the modified sine and cosine (with phase 0) are

cos 2πt and sin 2πt , 0 ≤ t ≤ 1 .

These functions together with the restriction that 0 ≤ t ≤ 1 describe a point moving coun-
terclockwise once around the unit circle in one second, starting and ending at the point
(1, 0).

• What are the graphs of cos 2πt and sin 2πt?

If we want to start at a different point, specified by a phase φ, we’d consider

cos(2πt+ φ) and sin(2πt+ φ) .

If we wanted to modify the amplitude to A we’d form

A cos(2πt+ φ) and A sin(2πt+ φ) .

What functions describe a point completing ν cycles in 1 second? Here as t goes from 0
to 1 we want θ to go from 0 to 2πν. To achieve this we simply take

θ = 2πνt

So, for example, if ν = 2 we make two complete cycles in 1 second, while if ν = 1/2 we only
make a half-cycle (half way around the circle) in one second. The modified sine and cosine
are, accordingly,

cos 2πνt and sin 2πνt .
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• What are the graphs of cos 2πνt and sin 2πνt, for ν = 2, ν = 1/2?
• What is the period of cos 2πνt and sin 2πνt, for ν = 2, ν = 1/2?

The number ν in cos 2πνt and sin 2πνt is called the frequency. It has units cycles per second
and dimension 1/sec. This unit is called the Hertz, abbreviated Hz, after Heinrich Hertz
(1857 - 1894), who did important experimental work on the existence of electromagnetic
waves, verifying the theoretical work of James Clerk Maxwell.

The relationship between the period and frequency for cos 2πνt and sin 2πνt is

period =
1

frequency
.

We saw this in the graphs, and we can also see it algebraically, for

cos(2πν(t+
1

ν
)) = cos(2πνt+ 2πν

1

ν
) = cos(2πνt+ 2π) = cos(2πνt)

with the same kind of calculation showing that

sin(2πν(t+
1

ν
)) = sin 2πνt .

High frequency means short (small) period – many cycles in one second. Low frequency
means long (large) period – few cycles in one second.

Allowing for a change of frequency, amplitude, and phase, the basic signal processing we
do to a sine and cosine is to form

A cos(2πνt+ φ) and A sin(2πνt+ φ) .

So much for modifications of a single sine or a single cosine. Interesting enough. What if
we combine sines and cosines of different frequencies, and amplitudes, and phases? That’s
when things get really interesting.

It all adds up

I want to spend a little time on the algebra of summing trig functions. First of all, it’s
convenient to assume that the fundamental frequency is 1 and to add in integral frequencies
together with possible phase shifts. One way of writing a general finite sum of such sinusoids
is then

N∑
n=1

An sin(2πnt+ φn).

It will take us a little time to understand why this is the ‘general’ sort of sum of trig functions
that’s useful to consider, i.e. why we look at integer multiples of the fundamental period.

What about the phase shifts for each term? That certainly adds a degree of generality,
mathematically, but it’s also important, practically, to include them. At one end of a channel
we generate a signal, possibly one with many frequencies in its spectrum. Then, for instance,
in the case of a family of radiating antennas the signals from each may be out of phase with
each other, and we must take that into account. Even if the signal starts out with all
sinusoidal parts in phase it may not end up that way. As the signal travels through a
channel different parts of the signal may follow different paths.1. When the signal reaches

1In some cases this can depend on the frequency. This happens for light propagating through an optical
fiber. To minimize dispersion one wants monochromatic light – one frequency
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the end of the channel the different sinusoidal terms may then be out of phase – they still
have the same frequencies as when they started, but they may not all be arriving at the
same time. If we want to write down an expression that models the signal at the end of its
journey we should account for the phase changes.

Having said so much about the aspects of this form of the sum, there are other ways of
writing a general sum of trig functions that prove to be easier to handle algebraically. Use
the addition formula for the sine function

sin(2πt+ φn) = sin(2πnt) cosφn + cos(2πnt) sinφn

to write an alternative form for the sum as
N∑
n=1

An sin(2πnt+ φn) =
N∑
n=1

An(sin(2πnt) cosφn + cos(2πnt) sinφn)

=
N∑
n=1

(an cos 2πnt+ bn sin 2πnt).

Here

an = An sinφn, bn = An cosφn.

Thus a general sum of sinusoids can also be written as a sum of sines and cosines, with no
phase shifts;

N∑
n=1

(an cos 2πnt+ bn sin 2πnt),

Note that √
a2
n + b2n = |An|,

so the amplitudes An from the first form of the sum are still ‘visible’ in the second form of
the sum. What’s not as visible is what happened to the phases in going from the first form
to the second, though they’re still there in the an and bn. Once again, the fact that there are
both sines and cosines in the second form of the sum is due to the phase shifts in the first.

I’ve neglected to say that it’s often good to include a constant term. Graphically, this just
shifts the whole picture up (or down) We thus write the most general sum as

a0

2
+

N∑
n=1

(an cos 2πnt+ bn sin 2πnt)

The reason for writing the constant term as a fraction is a convention that makes some
subsequent notations easier; we’ll see.

In many ways the sine - cosine form of the sum is more convenient to work with than
the sum of phase-shifted sine functions. But the most convenient form of all uses complex
numbers and complex exponentials, to represent the terms.

I’m going to assume that you’re comfortable with the basic algebra and geometry of
complex numbers, and there are separate notes that review some aspects. For our present
work, the important formula (the only important formula) is Euler’s formula:

eit = cos t+ i sin t.
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Euler’s formula has as a consequence the most wondrous equation in all of mathematics:

eiπ + 1 = 0 .

One other important thing to observe is that if m is any integer then

e2πim = cos 2πm+ i sin 2πm = 1.

and

eπim =

{
1, m even

−1, m odd

We’ll use this later.
Substituting 2πint for t in

eit = cos t+ i sin t,

we can write

e2πnit = cos 2πnt+ i sin 2πnt.

We can solve separately for the cosine and the sine (the real and the imaginary parts) by
first using:

e−2πint = cos(−2πnt) + i sin(−2πnt) = cos 2πnt− i sin 2πnt.

and then adding and subtracting the equations. This gives

cos 2πnt =
e2πnit + e−2πint

2
, sin 2πnt =

e2πnit − e−2πint

2i
= −ie

2πnit − e−2πint

2
,

where we have also used the fact that 1/i = −i. For the real excitement, plug this into the
sum of sines and cosines:

a0

2
+

N∑
n=1

(an cos 2πnt+ bn sin 2πnt) =

a0

2
+

N∑
n=1

(
−ibn

e2πnit − e−2πint

2
+ an

e2πnit + e−2πint

2

)
=

a0

2
+

N∑
n=1

(
1

2
(an − ibn)e2πnit +

1

2
(an + ibn)e−2πint

)
.

We can put this into still a more compact form. We can think of the big sum, above, as
two sums:

N∑
n=1

(
1

2
(an − ibn)e2πnit +

1

2
(an + ibn)e−2πint

)
=

N∑
n=1

1

2
(an− ibn)e2πnit+

N∑
n=1

1

2
(an+ ibn)e−2πint,

Now, we want to write these as a sum over ’positive n’ and ‘negative n’. First, put

cn =
1

2
(an − ibn), and c−n =

1

2
(an + ibn).

(Thus c−n is the complex conjugate of cn, written c−n = cn.) Write c0 = a0/2; here comes
the reason for writing the constant term as a0 over 2. Leave the first sum alone, and write
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the second sum with n going from −1 to −N . Then the expression becomes

a0

2
+

N∑
n=1

cne
2πnit +

−N∑
n=−1

cne
2πnit.

We can combine everything to write

a0

2
+

N∑
n=1

(an cos 2πnt+ bn sin 2πnt) =
N∑

n=−N

cne
2πnit.

Truly, the most compact and useful way of writing a sum of trig functions, of the type
we’ve considered, is in the complex form:

N∑
n=−N

cne
2πnit, c−n = cn.

You may be upset at writing something real (a signal) in terms of something complex. My
only advice to you is to get over it. The relation c−n = cn between coefficients is important
and don’t forget about it. A real signal must have this property when expressed in terms of
complex exponentials.

For now we think in terms of time and frequency. Suppose I have a complicated looking
real, periodic signal. I can scale the time to assume that the pattern repeats every 1 second
(for example from t = 0 to t = 1). Call the signal f(t).

Can we write it in the form

f(t) =
N∑

n=−N

cne
2πnit ?

The unknowns in this expression are the coefficients cn. Can we find them?

Note that writing a real signal this way already imposes the condition c−n = cn on the
coefficients.

Let’s take the coefficient ck, for some k. We can isolate it by multiplying through both
sides by e−2πikt:

e−2πiktf(t) = e−2πikt

N∑
n=−N

cne
2πnit

= · · ·+ e−2πiktcke
2πikt + · · ·

= · · ·+ ck + · · ·

ck = e−2πiktf(t)−
N∑

n=−N,n 6=k

cne
−2πikte2πnit = e−2πiktf(t)−

N∑
n=−N,n6=k

cne
2πi(n−k)t.

That pulls out the coefficient ck, but the expression involves all of the other unknown coef-
ficient. Another idea is needed. That idea is integrating both sides from 0 to 1.
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Just as in calculus, we can evaluate the integral by∫ 1

0

e2πi(n−k)t dt =
1

2πi(n− k)
e2πi(n−k)t

]t=1

t=0

=
1

2πi(n− k)
(e2πi(n−k) − e0)

=
1

2πi(n− k)
(1− 1)

= 0.

Note that we needed to know n 6= k here.
Since the integral of the sum is the sum of the integrals, and the coefficients cn come out

of each integral, we have a formula for the k’th coefficient (for each k):

ck =

∫ 1

0

e−2πiktf(t) dt.

Observe how the symmetry relation c−n = cn comes out of this.

ck =

∫ 1

0

e−2πiktf(t) dt =

∫ 1

0

e2πiktf(t) dt = c−k.

This calculation works because f(t) is real. Observe also that the zeroth coefficient is the
average value of the function:

c0 =

∫ 1

0

f(t) dt.

Let’s summarize and be careful to note what we’ve done here – and what we haven’t done.
We’ve shown that if we can write a periodic function f(t) as a sum

f(t) =
N∑

n=−N

cne
2πnit, c−n = cn,

then the coefficients have to be given by

cn =

∫ 1

0

f(t)e−2πint dt.

These are called the Fourier coefficients of f(t), named after Joseph Fourier who introduced
these ideas into mathematics and science. The sum

N∑
n=−N

cne
2πnit

is called the (finite) Fourier series for f(t). If you want to be mathematically hip and impress
your friends at cocktail parties, use the notation

f̂(n) =

∫ 1

0

f(t)e−2πint dt

for the Fourier coefficients.
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Let’s show one more property of the Fourier coefficients, that they can be calculated by
intergrating over any interval of length 1, i.e., over any cycle. For this consider the function
of a defined by

φ(a) =

∫ a+1

a

e−2πintf(t) dt.

Differentiate with respect to a:

φ′(a) = e−2πin(a+1)f(a+ 1)− e−2πinaf(a)

= e−2πinae−2πinf(a+ 1)− f(a)

= e−2πina(f(a+ 1)− f(a))

= 0 because f(t) is periodic of period 1.

Thus φ′(a) is identically zero and hence φ(a) is constant – the value does not depend on a.
In particular, ∫ a+1

a

e−2πintf(t) dt = φ(a) = φ(0) =

∫ 1

0

e−2πintf(t) dy = f̂(n).

OK, all this is fine. But I have not shown that you actually have the equality

f(t) =
N∑

n=−N

cne
2πnit, c−n = cn,

that you can actually write f(t) as such a sum. Think it’s true? How many terms might
you have to take? What if you take an infinite series?

Let’s look at an example. Consider a ‘square wave’ of period 1, such as illustrated, below.
Let’s calculate the Fourier coefficients. The function is

f(t) =

{
1, 0 ≤ t < 1

2

−1, 1
2
≤ t < 1
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and then extended to be periodic. The zeroth coefficient is the average value of the function
on 0 ≤ t ≤ 1. Obviously this is zero. For the other coefficients we have

f̂(n) =

∫ 1

0

e−2πintf(t) dt

=

∫ 1/2

0

e−2πint dt−
∫ 1

1/2

e−2πint dt

=

[
− 1

2πin
e−2πint

]1/2

0

−
[
− 1

2πin
e−2πint

]1

1/2

=
1

πin
(1− e−πin)

According to this we should consider the infinite Fourier series∑
n6=0

1

πin
(1− e−2πin)e2πint

After the fact we might reflect that, of course we shouldn’t expect to be able to use a finite
Fourier series to represent a square wave. The complex exponentials are continuous and so
is a finite sum of them, while the square wave has jump discontinuities.

We can write the sum in a simpler form by first noting that

1− e−πin =

{
0, n even

2, n odd

so the series becomes ∑
n odd

2

πin
e2πint.

Now combine the positive and negative terms and use

e2πint − e−2πint = 2i sin 2πnt.

Substituting this into the series and writing n = 2k + 1, our final answer is

4

π

∞∑
k=0

1

2k + 1
sin 2π(2k + 1)t.

(Note that the function f(t) is odd and this jibes with the Fourier series having only sine
terms.)

What kind of series is this? In what sense does it converge, if at all, and can we write

f(t) =
4

π

∞∑
k=0

1

2k + 1
sin 2π(2k + 1)t ?

If we look at the graphs of partial sums we see some strange phenomena. The graphs below
are sums of 9 and 39 terms, respectively.
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To relive the struggles that went into understanding the convergence of Fourier series and
the proper sense of equality between the function and its Fourier series, such as that for
the square wave, is to relive the history of much of mathematical analysis in the 19th and
early 20th centuries. We won’t, but I do think it is worth the effort to expose some of the
mathematical structure because you will see these ideas in many places. That structure is
the inner product on the space of square integrable functions.

There’s much more to the structure of the Fourier coefficients and to the idea of writing
a periodic function as a sum of complex exponentials than might appear from our simple
derivation. There are:

• Algebraic and geometric aspects
– The algebraic and geometric aspects are straightforward extensions of the al-

gebra and geometry of vectors in Euclidean space. The key ideas are the inner
product (dot product), orthogonality, and norm. Your job here is to transfer your
intuition from geometric vectors to a more general setting where the vectors are
signals; at least accept that the words transfer in some kind of meaningful way
even if the pictures do not.

• Analytic aspects
– The analytic aspects are not straightforward and require new ideas on limits and

on the nature of integration. The aspect of ‘analysis’, as a field of mathematics
distinct from other fields, is its systematic use of limiting processes. To define
a new kind of limit, or to find new consequences of taking limits, is to define a
new area of analysis. We really can’t cover that and it’s not appropriate to try
to, but I’ll say a little about it.

Let me introduce the notation, basic terminology and state what the important results
are now, so you can see the point. Then I’ll explain where these ideas come from and how
they fit together.

Once again, to be definite we’re working with periodic functions of period 1. We can
consider such a function already to be defined for all real numbers, and satisfying the identity
f(t + 1) = f(t) for all t, or we can consider f(t) to be defined initially only on the interval
from 0 to 1, say, and then extended to be periodic and defined on all of R by repeating the
graph. In either case, once we know what we need to know about the function on [0, 1] we
know everything. All of the action in the following discussion takes place on the interval
[0, 1].

When f(t) is a signal for 0 ≤ t ≤ 1 the energy of the signal is defined to be the integral∫ 1

0

f(t)2 dt.

This definition of energy comes up in other physical contexts also; we don’t have to be talking
about functions of time. Thus ∫ 1

0

f(t)2 dt <∞

means that the signal has finite energy, a reasonable condition to expect or to impose.
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For mathematical reasons, primarily, it’s best to take the square root of the integral, and
to define

||f || =
{∫ 1

0

f(t)2 dt

}1/2

With this definition one has, for example, that

||αf || = |α|||f ||,

whereas if we didn’t take the square root the constant would come out to the second power
– not as nice. One can also show, though the proof is not so obvious (see Appendix 1), that
the triangle inequality holds:

||f + g|| ≤ ||f ||+ ||g||.
We also measure the distance between two functions, via

||f − g|| =
{∫ 1

0

(f(t)− g(t))2 dt

}1/2

Then ||f − g|| = 0 if and only if f = g.

Now get this: The length of a vector is the square root of the sum of the
squares of its components. This integral norm is the continuous analog of that,
and we’ll make the analogy even closer when we introduce the corresponding
dot product.

We let L2([0, 1]) be the set of functions f(t) on [0, 1] for which∫ 1

0

f(t)2 dt <∞

The ‘L’ stands for Lebesgue, the French mathematician who introduced a new definition of
the integral that underlies the analytic aspects of the results we’re about to talk about. His

work was around the turn of the 20th century. The length we’ve just introduced, ||f ||, is
called the square norm or the L2-norm of the function. If one wants to distinguish this from
other norms that might come up one writes ||f ||2.

It’s true, you’ll be relieved to hear, that if f(t) is in L2([0, 1]) then the integral defining
its Fourier coefficients exists. See Appendix 1 for this. 2

Here now is the life’s work of several generations of mathematicians, all dead, all still
revered:

Let f(t) be in L2([0, 1]) and let

f̂(n) =

∫ 1

0

e−2πintf(t) dt, n = 0,±1,±2, . . . ,

be its Fourier coefficients. Then

2The complex integral can be written in terms of two real integrals by writing e−2πint = cos 2πnt−i sin 2πnt
so everything can be defined and computed in terms of real quantities. There’s something more to be said
on complex-valued versus real-valued functions in all of this, but it’s best to put that off just now.
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(1) For any N the finite sum

N∑
n=−N

f̂(n)e2πnit

is the best approximation in L2([0, 1]) (best least squares approximation,
best root mean square approximation) to f(t) of ‘degree’ N .

(2) The complex exponentials e2πnit, n = 0,±1,±2, . . . form a basis for
L2([0, 1]), and the partial sums, above, converge to f(t) as N → ∞
in the L2-distance. This means that

lim
N→∞

∥∥∥∥∥
N∑

n=−N

f̂(n)e2πnit − f(t)

∥∥∥∥∥ = 0

We write

f(t) =
∞∑

n=−∞

f̂(n)e2πnit,

where the equals sign is interpreted in terms of the limit.
(3) The energy can be calculated from the Fourier coefficients:∫ 1

0

f(t)2 dt =
∞∑

n=−∞

|f̂(n)|2.

This is known, depending on who you’re talking to, as Rayleigh’s identity
or as Parseval’s theorem.

For completeness, let me add a fourth point that’s a sort of converse to
items two and three. We won’t use this, but it ties things up nicely.

4. If {cn}, n = 0,±1,±2, . . . is any sequence of complex numbers for which
∞∑

n=−∞

|cn|2 <∞,

then the function

f(t) =
∞∑

n=−∞

cne
2πnit

is in L2([0, 1]) (meaning the limit of the partial sums converges to a

function in L2([0, 1])) and cn = f̂(n).
This last result is usually referred to as the Riesz-Fischer theorem.

And the point of this is, again . . . One way to think of the formula for the Fourier
coefficients is as passing from the ‘time domain’ to the ‘frequency domain’: From a knowledge
of f(t) (the time domain) we produce a portrait of the signal in the frequency domain, namely

the (complex) coefficients f̂(n) associated with the (complex) harmonics e2πnit. The function

f̂(n) is defined on the integers, n = 0,±1,±2, . . . and the equation

f(t) =
∞∑

n=−∞

f̂(n)e2πnit,
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recovers the time domain representation from the frequency domain representation. At least
it does in the L2 sense of equality. The extent to which equality holds in the usual, pointwise
sense (plug in a value of t and the two sides agree) can be an extremely complicated and
delicate question. We will avoid it – meet me on a street corner sometime and I’ll tell you
about it.

Recall that the set of all frequencies that occur in the Fourier series for f(t) is called the
spectrum of f . The spread of frequencies, that is the Maximum frequency−Minimum frequwncy
is called the bandwidth; this was mentioned in the last set of notes. We’ll use these terms
again when we introduce the Fourier transform.

Orthogonality. The aspect of Euclidean geometry that sets it apart from other geometries
which share most of its other features is perpendicularity. To set up a notion of perpendicu-
larity is to try to copy the Euclidean properties that go with it, together with the associated
reasoning. Perpendicularity becomes operationally useful when it’s linked to measurement,
i.e. length. This link is the Pythagorean theorem.3 Perpendicularity becomes more austere
when mathematicians start referring to it as orthogonality, but that’s what I’m used to.

Vectors. To fix ideas, I want to remind you briefly of vectors and geometry in Euclidean
space. We write vectors in Rn as n-tuples of real numbers:

v = (v1, v2, . . . , vn)

The vi are called the components of v. The length, or norm of v is

||v|| = (v2
1 + v2

2 + · · ·+ v2
n)1/2.

The distance between two vectors v and w is ||v −w||.
How does the Pythagorean theorem look in terms of vectors? Let’s just work in R2. Let

u = (u1, u2), v = (v1, v2) and w = u + v = (u1 + v1, u2 + v2). If u, v and w form a right
triangle with w the hypotenuse then

||w||2 = ||u + w||2 = ||u||2 + ||v||2

(u1 + v1)
2 + (u2 + v2)

2 = (u2
1 + u2

2) + (v2
1 + v2

2)

(u2
1 + 2u1v1 + v2

1) + (u2
2 + 2u2v2 + v2

2) = u2
1 + u2

2 + v2
1 + v2

2

The squared terms cancel and we conclude that

u1v2 + u2v2 = 0

is a necessary and sufficient condition for u and v to be perpendicular.

3How do you lay out a big rectangular field of specified dimensions? You use the Pythagorean theorem. I
had an experience with this a few summers ago when I volunteered to help lay out soccer fields. I was only
asked to assist, because evidently I could not be trusted with the details. Put two stakes in to determine
one side of the field. That’s one leg of what is to become a right triangle – half the field. I hooked a tape
measure on one stake and walked off in a direction generally perpendicular to the first leg, stopping when I
had gone the regulation distance for that side of the field, or when I needed rest. The chief hooked a tape
measure on the other stake and walked approximately along the diagonal of the field – the hypotenuse. We
met up and adjusted our positions (I was not to change the distance I had walked) so that the Pythagorean
theorem was satisfied. He had a chart showing what his distance should be. Hence the leg I determined must
be perpendicular to the first leg we laid out. This was my first practical use of the Pythagorean theorem,
and so began my transition from a pure mathematician to an engineer.
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And so we introduce the (algebraic) definition of the inner product, or dot product of two
vectors. We give this in Rn:

If v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) then the the inner product is:

v ·w = v1w1 + v2w2 + · · ·+ vnwn

Other notations for the inner product are (v,w) (just parentheses; we’ll be
using this notation) and 〈v,w〉 (angle brackets; for those who think paren-
theses are not fancy enough. The use of angle brackets is especially common
in physics.)

Notice that

(v,v) = v2
1 + v2

2 + · · ·+ v2
n = ||v||2.

Thus

||v|| = (v,v)1/2.

There is also a geometric approach to the inner product, which leads to the alternate
definition

(v,w) = ||v|| ||w|| cos θ

where θ is the angle between v and w.
We see that (v,w) = 0 if and only if v and w are orthogonal. This is a truly helpful result,

especially because it’s so easy to verify when the vectors are given in coordinates. The inner
product does more than identify orthogonal vectors, however. It also tells you how much of
one vector is in the direction of another. That is, for example, the vector

(v,w)
w

||w||
is the projection of v onto the unit vector w/||w||, or (v,w) is the (scalar) component of v
in the direction of w. In that sense I think of the inner product as measuring how much one
vector ‘knows’ another; two orthogonal vectors don’t know each other.

Finally, I want to list the main algebraic properties of the inner product, I won’t give the
proofs – they are straightforward verifications. We’ll see these properties again, modified
slightly to allow for complex numbers, a little later.

(1) (v,v) ≥ 0 and (v,v) = 0 if and only if v = 0. (positive definiteness)
(2) (v,w) = (w,v) (symmetry)
(3) (αv,w) = α(v,w) for any scalar α. (homogeneity)
(4) (v + w,u) = (v,u) + (w,u) (additivity)

In fact, these are exactly the properties that ordinary multiplication has.

Orthonormal bases. The natural basis for Rn are the vectors of length 1 in the n ‘coor-
dinate directions’:

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

It’s called the ‘natural’ basis because, among other things, a vector v = (v1, v2, . . . , vn) is
expressed naturally in terms of its components as

v = v1e1 + v2e2 = · · ·+ vnen.
17



One says that the natural basis e1, e2, . . . , en are an orthonormal basis for Rn, meaning

(ei, ej) = δij,

where δij is the Kronecker delta defined by

δij =

{
1, if i = j

0, if i 6= j

Notice that
(v, ek) = vk,

and hence that

v =
n∑
k=1

(v, ek)ek.

In words:

v is decomposed as a sum of vectors in the directions of the orthonormal
basis vectors, and the components are given by the inner product of v with
the basis vectors.

Functions. All of what we’ve just done can be carried over to L2([0, 1]), even with the
same motivation. When will two functions be perpendicular? If the Pythagorean theorem
is satisfied. Thus if we are to have

||f + g||2 = ||f ||2 + ||g||2

then ∫ 1

0

(f(t) + g(t))2 =

∫ 1

0

f(t)2 dt+

∫ 1

0

g(t)2 dt∫ 1

0

(f(t)2 + 2f(t)g(t) + g(t)2) dt =

∫ 1

0

f(t)2 dt+

∫ 1

0

g(t)2 dt∫ 1

0

f(t)2 dt+ 2

∫ 1

0

f(t)g(t) dt+

∫ 1

0

g(t)2 dt =

∫ 1

0

f(t)2 dt+

∫ 1

0

g(t)2 dt

If you buy the premise, you have to buy the conclusion – we conclude that the condition to
adopt to define when two functions are orthogonal is∫ 1

0

f(t)g(t) dt = 0

So we define the inner product of two functions in L2([0, 1]) to be.

(f, g) =

∫ 1

0

f(t)g(t) dt

This inner product has all of the algebraic properties of the dot product of vectors. We
list them, again:

(1) (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0.
(2) (f, g) = (g, f)
(3) (f + g, h) = (f, h) + (g, h)
(4) (αf, g) = α(f, g)
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Now, let me relieve you of a burden that you may feel you must carry. There is no reason
on earth why you should have any pictorial intuition for the inner product of two functions,
and for when two functions are orthogonal. We’re working by analogy here, It’s a very strong
analogy, but that’s not to say that the situations are identical. They aren’t. As I have said
before, what you should do is draw pictures in R2 and R3 and using the same words make
the attempt to carry the reasoning based on those pictures over to L2([0, 1]), for example.

There’s a catch. There’s always a catch. In the preceding discussion we’ve been working
with the real vector space Rn and (without comment) with real-valued functions in L2([0, 1]).
But, of course, the definition of the Fourier coefficients involves complex functions in the
form of the complex exponential, and the Fourier series is a sum of complex terms. We could
avoid that by writing everything in terms of sine and cosine, but not wanting to sacrifice the
algebraic dexterity we can show by working with the complex form, a more effective choice
is to consider complex-valued square integrable functions and the complex inner product.

Here are the definitions. For the definition of L2([0, 1]) we assume that∫ 1

0

|f(t)|2 dt <∞.

Note the use of the magnitude |f(t)|2 in the integrand, something we didn’t have to do in
case f(t) is real-valued. The inner product of complex valued functions f(t) and g(t) in
L2([0, 1]) is defined to be

(f, g) =

∫ 1

0

f(t)g(t) dt.

The complex conjugate in the second slot causes a few changes in the algebraic properties.
To wit:

(1) (f, g) = (g, f) (Hermitian symmetry)
(2) (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0 (positive definiteness – same as

before)
(3) (αf, g) = α(f, g), (f, αg) = α(f, g) (homogeneity – same as before in first slot,

conjugate scalar comes out in second slot)
(4) (f + g, h) = (f, h) + (g, h), (f, g+ h) = (f, g) + (f, h) (additivity – same as before,

no difference between additivity in first or second slot)

From now on, when we talk about L2([0, 1]) and the inner product on L2([0, 1]) we will
always assume the complex inner product. If the functions happen to be real-valued then
this reduces to the earlier definition.

The complex exponentials are an orthonormal basis. One of the greatest hits of
the theory of Fourier series says that the complex exponentials form a basis for L2([0, 1]).
Particularly exciting is that, just like the natural basis of Rn, they are an orthonormal basis.

Here’s the calculation that demonstrates this last fact. Write

en(t) = e2πint.
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The inner product of two of them, en(t) and em(t), when n 6= m is:

(en, em) =

∫ 1

0

e2πnite2πimt dt

=

∫ 1

0

e2πnite−2πimt dt

=

∫ 1

0

e2πi(n−m)t dt

=
1

2πi(n−m)
e2πi(n−m)t

]1

0

=
1

2πi(n−m)
(e2πi(n−m) − e0)

=
1

2πi(n−m)
(1− 1)

= 0

They are orthogonal. And when n = m

(en, en) =

∫ 1

0

e2πnite2πint dt

=

∫ 1

0

e2πnite−2πint dt

=

∫ 1

0

e2πi(n−n)t dt

=

∫ 1

0

1 dt = 1.

Therefore the functions en(t) are orthonormal:

(en, em) = δnm =

{
1, if n = m

0, if n 6= m

In fact, we did this very calculation when we found what the Fourier coefficients must be
given that a signal has a Fourier series. Could you have made the conceptual leap from that
simple fact to the realization that it’s ‘orthogonality’ that’s the unifying idea?

What is the component of a function f(t) ‘in the direction’ en(t)? By analogy to the
Euclidean case, it is given by the inner product

(f, en) =

∫ 1

0

f(t)e−2πint dt,

precisely the n’th Fourier coefficient f̂(n).
Thus writing the Fourier series

f =
∞∑

n=−∞

f̂(n)e2πnit,
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as we did earlier, is exactly like the decomposition in terms of an orthonormal basis and
associated inner product:

f =
∑
n

(f, en)en.

A direct and important consequence of this is:

The Energy Theorem (also known as Rayleigh’s Theorem, also known as
Parseval’s Identity)

f(t) =
∞∑

n=−∞

f̂(n)e2πint.

Then

∫ 1

0

|f(t)|2 dt =
∞∑

n=−∞

|f̂(n)|2.

Now get this, again. Another way of writing this is

||f || =

{
∞∑

n=−∞

(f, en)2

}1/2

.

That is, the norm (length) of the function f is the square root of the sum of the squares of
its components (f, en) in the orthonormal basis en(t) = e2πnit. Maybe we should call this the
Pythagorean theorem.

The proof is a cinch! With

f(t) =
∞∑

n=−∞

f̂(n)e2πnit =
∞∑

n=−∞

(f, en)en.
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we compute ∫ 1

0

|f(t)|2 dt = ||f ||2 = (f, f)

=

(
∞∑

n=−∞

(f, en)en,
∞∑

m=−∞

(f, em)em

)
=

∑
n,m

(f, en)(f, em)(en, em)

=
∞∑

n,m=−∞

(f, en)(f, em)δnm

=
∞∑

n=−∞

(f, en)(f, en)

=
∞∑

n=−∞

|(f, en)|2

=
∞∑

n=−∞

|f̂(n)|2

Two expressions for the same thing. . . The Energy Theorem says that the energy∫ 1

0

|f(t)2 dt

can be computed from spectral information. It is the sum of the squares of the Fourier
coefficients. We may also be able to compute the integral, of course. Then we are in the
position of having two expressions for the same thing. Powerful, very powerful. Let’s do an
example.

Consider the sawtooth function;

f(t) = t, for 0 ≤ t < 1

and then extended periodically. The graph is:
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We first compute the Fourier coefficients:

c0 =

∫ 1

0

t dt =

[
t2

2

]1

0

=
1

2

cn =

∫ 1

0

e−2πintt dt (n 6= 0)

=

[
− t

2πin
e−2πint

]1

0

−
∫ 1

0

− 1

2πin
e−2πint dt (integrate by parts)

= − 1

2πin

The Fourier series is then

S(t) =
1

2
−

∞∑
n=−∞,n 6=0

1

2πin
e2πint

and the sum of the absolute value of the squares of the coefficients is

1

4
+

∞∑
n=−∞,n 6=0

1

4π2n2

=
1

4
+

1

2π2

∞∑
n=1

1

n2
(combining the ± terms).

Now let’s calculate the integral of the square of the function:∫ 1

0

|S(t)|2 dt =

∫ 1

0

t2 dt =

[
t3

3

]1

0

=
1

3
.

Invoking the Energy Theorem then gives

1

3
=

1

4
+

1

2π2

∞∑
n=1

1

n2
,

that is
1

12
=

1

2π2

∞∑
n=1

1

n2
,

or
π2

6
=
∞∑
n=1

1

n2
.

That’s a very famous identity. I hope you enjoyed it.

Appendix 1: The Cauchy-Schwarz inequality and its consequences

The Cauchy-Schwarz inequality is between the inner product of two vectors and their
norms. It states

|(v,w)| ≤ ||v|| ||w||.
This is trivial to see from the geometric definition of the inner product, for

|(v,w)| = ||v|| ||w|| | cos θ| ≤ ||v|| ||w||,
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because | cos θ| ≤ 1. In fact, the geometric definition of the inner product will follow from
the Cauchy-Schwarz inequality.

It’s certainly not trivial to derive the inequality from the algebraic definition. Written out
in components, the inequality says that∣∣∣∣∣

n∑
k=1

vkwk

∣∣∣∣∣ ≤
{

n∑
k=1

v2
k

}1/2{ n∑
k=1

w2
k

}1/2

.

Sit down and try that one out, sometime.
In fact, the proof of the Cauchy-Schwarz inequality in general uses only the four algebraic

properties of the inner product listed earlier. Consequently the same argument applies to
any sort of ‘product’ satisfying these properties. It’s such an elegant argument (due to John
von Neumann, I believe) that I’d like to show it to you. I’ll give the argument for real inner
products. I’ll let you see how to modify it in the complex case.

Any inequality can ultimately be written in a way that says that some quantity is positive.
There aren’t many things that we know are positive: the square of a real number; the area
of something; and the length of something are examples.4 For this proof we use that the
norm of a vector is positive, but we throw in a parameter.5 Let t be any real number.
Then ||v − tw||2 ≥ 0. Write this in terms of the inner product and expand out using the
properties, above. (Because of homogeneity and additivity, it’s just like multiplication –
that’s important to realize):

0 ≤ ||v − tw||2

= (v − tw,v − tw)

= (v,v)− 2t(v,w) + t2(w,w)

= ||v||2 − 2t(v,w) + t2||w||2

This is a quadratic equation in t, of the form at2 + bt+ c, where a = ||w||2, b = −2(v,w),
and c = ||v||2. The first inequality, and the chain of equalities that follow, says that this
quadratic is always non-negative. Now a quadratic that’s always non-negative has to have a
non-positive discriminant: The discriminant, b2 − 4ac determines the nature of the roots of
the quadratic. If the discriminant is positive then there are two real roots. But if there are
two real roots, then the quadratic must be negative somewhere – draw a graph!

Therefore b2 − 4ac ≤ 0, which translates to

4(v,w)2 − 4||w||2 ||v||2 ≤ 0, or

(v,w)2 ≤ ||w||2 ||v||2.

Take the square root of both sides to obtain

|(v,w)| ≤ ||v|| ||w||,

as desired. (Amazing, isn’t it – a non-trivial application of the quadratic formula!) This
proof also shows when equality holds in the Cauchy-Schwarz inequality. When is that?

4This little riff on the nature of inequalities classifies as a minor secret of the universe. More subtle
inequalities sometimes rely on convexity, as in the center of gravity of a system of masses is contained within
the convex hull of the masses.

5‘Throwing in a parameter’ goes under the heading of dirty tricks of the universe.
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We now know that

−1 ≤ (v,w)

||v|| ||w||
≤ 1.

Therefore there is a unique angle θ with 0 ≤ θ ≤ π such that

cos θ =
(v,w)

||v|| ||w||
,

i.e.

(v,w) = ||v|| ||w|| cos θ.

Identifying θ as the angle between v and w we have now reproduced the geometric definition
of the inner product. What a relief.

The triangle inequality,

||v + w|| ≤ ||v||+ ||w||
follows directly from the Cauchy-Schwarz inequality. Here’s the argument:

||v + w||2 = (v + w,v + w)

= (v,v) + 2(v,w) + (w,w)

≤ (v,v) + 2|(v,w)|+ (w,w)

≤ (v,v) + 2||v|| ||w||+ (w,w) (by Cauchy-Schwarz)

= ||v||2 + 2||v|| ||w||+ ||w||2

= (||v||+ ||w||)2.

Now take the square root of both sides to get ||v + w|| ≤ ||v|| + ||w||. In coordinates this
says that {

n∑
k=1

(vk + wk)
2

}1/2

≤

{
n∑
k=1

v2
k

}1/2

+

{
n∑
k=1

w2
k

}1/2

.

For the inner product on L2([0, 1]) the Cauchy-Schwarz inequality takes the impressive
form ∣∣∣∣∫ 1

0

f(t)g(t) dt

∣∣∣∣ ≤ {∫ 1

0

|f(t)|2 dt
}1/2{∫ 1

0

|g(t)|2 dt
}1/2

.

You can think of this as a limiting case of the Cauchy-Schwarz inequality for vectors – sums
of products become integrals of products on taking limits, an ongoing theme – but it’s better
to think in terms of general inner products and their properties. For example, we now also
know that

||f + g|| ≤ ||f ||+ ||g||,
i.e. that {∫ 1

0

(f(t) + g(t))2 dt

}1/2

≤
{∫ 1

0

f(t)2 dt

}1/2

+

{∫ 1

0

g(t)2 dt

}1/2

.

Once again, one could, I suppose, derive this from the corresponding inequality for sums,
but why keep gong through that extra work?
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Incidentally, I have skipped over something here. If f(t) and g(t) are square integrable,
then in order to get the Cauchy-Schwarz inequality working one has to know that the inner
product (f, g) makes sense, i.e. that∫ 1

0

f(t)g(t) dt <∞.

To deduce this you can first observe that6

f(t)g(t) ≤ f(t)2 + g(t)2.

With this ∫ 1

0

f(t)g(t) dt ≤
∫ 1

0

f(t)2 dt+

∫ 1

0

g(t)2 dt <∞,

since we started by assuming that f(t) and g(t) are square integrable.

Another consequence of this last argument is the fortunate fact that the Fourier coefficients
of a function in L2([0, 1]) exist. That is, we’re worried about the existence of∫ 1

0

e−2πintf(t) dt.

Now, ∣∣∣∣∫ 1

0

e−2πintf(t) dt

∣∣∣∣ ≤ ∫ 1

0

|e−2πintf(t)| dt =

∫ 1

0

f(t) dt,

so we’re worried whether ∫ 1

0

|f(t)| dt <∞,

i.e. that f(t) is absolutely integrable given that it is square integrable. But f(t) = f(t) · 1,
and both f(t) and the constant function 1 are square integrable on [0, 1]. No worries.

Warning: This casual argument would not work if the interval [0, 1] were
replaced by the entire real line. The constant function 1 has an infinite integral
on R. You may think we can get around this little inconvenience, but it is
exactly the sort of trouble that comes up in trying to apply Fourier series
ideas (where functions are defined on finite intervals) to Fourier transform
ideas (where functions are defined on all of R). We are truly worried about
this.

6And where does that come from? From the same positivity trick used to prove Cauchy-Schwarz:

0 ≤ (f(t)− g(t))2 = f(t)2 − 2f(t)g(t) + g(t)2,

hence
2f(t)g(t) ≤ f(t)2 + g(t)2.

This is the inequality between the arithmetic and geometric mean.
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